HOME WORK 4, PUTNAM PREPARATION

1. Find the largest real number k with the property that for all fourth-degree polynomials $P(x)=x^{4}+a x^{3}+b x^{2}+c x+d$ whose zeros are all real and positive, one has $(b-a-c)^{2} \geq k d$, and determine when equality holds.
2. Find all polynomials whose coefficients are equal either to 1 or -1 and whose zeros are all real.
3. Prove that there are unique positive integers a, n such that $a^{n+1}-(a+1)^{n}=2001$.
4. Find all polynomials $P(x)$ with integer coefficients satisfying $P\left(P^{\prime}(x)\right)=P^{\prime}(P(x))$ for all $x \in \mathbb{R}$.
5. Let $\mathrm{P}(\mathrm{x})$ be a polynomial of degree $\mathrm{n}>3$ whose zeros $x_{1}<x_{2}<x_{3}<\ldots<x_{n-1}<x_{n}$ are real. Prove that

$$
\mathrm{P}^{\prime}\left(\frac{x_{1}+x_{2}}{2}\right) \mathrm{P}^{\prime}\left(\frac{x_{n-1}+x_{n}}{2}\right) \neq 0 .
$$

6. Do there exist polynomials $a(x), b(x), c(x), d(x)$ such that the equality

$$
1+x y+x^{2} y^{2}=a(x) c(y)+b(x) d(y)
$$

holds identically?
7. Let $P(x)=c_{n} x^{n}+c_{n-1} x^{n-1}+\ldots+c_{0}$ be a polynomial with integer coefficients. Suppose that r is a rational number such that $P(r)=0$. Show that the n numbers $c_{n} r, c_{n} r^{2}+$ $c_{n-1} r, c_{n} r^{3}+c_{n-1} r^{2}+c_{n-2} r, \ldots, c_{n} r^{n}+\ldots+c_{1} r$ are integers.

